Login for faster access to the best deals. Click here if you don't have an account.

Polyimide Film for Harsh Applications Private

2 months ago Fashion, Home & Garden Bārāsat   32 views

-- ₹

  • img
Location: Bārāsat
Price: -- ₹

What is Polyimide Film?

Polyimide films are used in applications where reliable, durable performance is required, often in harsh environments. Polyimide film is a lightweight, flexible polymer based material that has excellent heat and chemical resistant properties. Polyimide film can withstand temperatures ranging from -269° C to 400° C. In addition to excellent heat resistance properties, polyimide film also has excellent dielectric properties. Typical applications for polyimide film include multi-layer insulation blankets for space, flexible electronics, tapes, and various other high heat applications.

High Temperature Adhesive Polyimide TapeSome of the many names we’ve heard over the years for this tape is Kapton Tape, adhesive Kapton, sticky Kapton and that sticky brown tape. With the possible exception of that last one, this is understandable but it is not technically correct.

Just to be clear, our Adhesive Polyimide Tape is not Kapton Tape. It is an excellent high temperature electrical insulation and masking tape with a range of benefits and we are happy to stand behind it without calling it something it is not.

Transparent Polyimide Film as a Biological Cell Culture Sheet with Microstructures

In recent years, the research on stem cell cultures has been actively performed in order to generate cell populations for the functional recovery of human body parts lost by illness or injury. Polymer materials have attracted attention in this field because they have biocompatibility, good mechanical properties, and outstanding moldability. Moreover, polymers are flexible and cheap when compared to glass materials. Polymer materials are often used as cell culture sheets, and polymer substrates with fabricated microstructures have been reported to support the culture of biological cells. Polymer materials in the form of elastomeric gels, porous bodies, films, and particles are suitable substrates for a biomatrix, and can be applied for the culture of complex living systems. In particular, the porous scaffold fabricated on the cells culture substrate promotes cell growth and survival and reproduces the three-dimensional environmental microcosm that is normally present in the living body. These reports show that the cell culture is greatly influenced by the fabricated structure. Moreover, the porous scaffold has to have a structure that is appropriate for the intended purpose; the scaffold system has to have a small surface so that the seeding density of cells is at maximum.It shows the main steps of the industrial scale production line of polyimide film by biaxial stretching from PAA precursors. In this procedure, the precursor monomers are firstly introduced into the polymerization reactor containing the solvent. After PAA synthesis, the obtained solution is deaerated and cast in the form of a continuous film onto the surface of a heated rotating stainless steel drum. The solvent is partially evaporated and a part of the imidization reaction takes place simultaneously. Thus, a self-supported PAA film is formed. The gel-like PAA film is peeled from the metal drum and first stretched in the machine direction (MD) while controlling the stretching rate. The PAA film is then stretched in the transverse direction (TD). The solvent is removed by evaporation, and the film is heat treated by means of hot air or radiant heat from an electrical heater to give a biaxial oriented polyimide film. The transverse stretching is carried out at temperatures around 350°C to facilitate the imidization of PAA into polyimide. Such a procedure has been widely used for PI film production, and there has been significant patent activity in the past half century since the commercialization of PI films in 1960s. Up to now, most of the commercially available wholly aromatic PI films have been produced by such kind of procedure.