Login for faster access to the best deals. Click here if you don't have an account.

Sjmoulds Private

1 year ago Multimedia Warangal   134 views

-- ₹

  • img
Location: Warangal
Price: -- ₹

Manufacturers used several injection moulding techniques to create medical device parts suited to a range of different uses. Much like consumer products, [url=http://www.sjmoulds.com/medical-mold/]medical Mold[/url] device technology is becoming smaller as manufacturing processes become more advanced, and injection moulding has allowed the size of parts to keep pace with this demand for smaller devices. According to a recent report from market insight firm 360 Research Reports, the global market for plastic injection moulding for medical devices is projected to reach over $42bn by 2026, up from $31.6bn in 2020. But there are several techniques used by companies that produce these parts for medical devices, as well as specific materials better suited to some methods than others, like metals and composites.

From thin wall moulding with liquid crystal polymers (LCP) to the more commonly known 3D printing technique, we look at five types of injection moulding technology used to manufacture medical devices.

[b]Five types of injection moulding used in medical devices[/b]

1. Thin wall moulding

Thin walls can be both a functional benefit and improve patient comfort when it comes to certain medical devices. The term itself simply means creating the walls of a device in a way that makes them thin relative to the whole piece, but in practice this tends to mean walls thinner than 1mm. The technique requires regular injection moulding equipment, but in order for walls to retain their structural integrity as they are created thinner, the base material used tends to be plastics like LCP, polypropylene and nylon although silicone and metal can also be moulded this way.

Material selection will depend on the device being produced and will have undergone testing at different levels of physical pressures and temperatures to ensure they can do the job. Thin walls are often found in wearable devices and micro surgical tools, but can also be used in invasive equipment like catheter ablation tools and endoscopes.

2. Gas-assisted injection moulding

When parts are created with regular injection moulding theres a risk that sink marks can occur, making the final product look unsightly and potentially structurally weaker than it needs to be. The reason this happens is because thick areas of a mould cool more slowly than thin ones when the resin is injected, and without enough pressure to pack these areas tightly against the walls, the uneven distribution can cause a sunken appearance.

Gas-assisted injection moulding is used to solve this issue by running gas (usually nitrogen) through channels built into the mould. The gas carves a hollow path through the middle of these thicker sections and creates the pressure needed to force the resin tightly against the walls of the mould, creating a smooth part that is structurally sound with no sink marks. This method is used to create complex parts without any visual blemishes, but because the pressure exerted by the gas lessens if it doesn't flow in a relatively straight line, it isn't recommended for parts with sharp corners in their design.

In short, medical mold has become famous and widely used. Many products like [url=http://www.sjmoulds.com/iv-set-mold/]IV Set Mold[/url], [url=http://www.sjmoulds.com/syringe-mold/]Syringe Mold[/url], [url=http://www.sjmoulds.com/hypodermic-needle-mold/]Hypodermic Needle Mold[/url], [url=http://www.sjmoulds.com/blood-collection-mold/]Blood Collection Mold[/url], [url=http://www.sjmoulds.com/blood-tubing-set-mold/]Blood Tubing Set Mold[/url], [url=http://www.sjmoulds.com/lab-equipment-mold/]Lab Equipment Mold[/url], etc. become commonly used.